原题链接在这里:
题目:
Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete at most two transactions.
Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).题解:
本题是的进阶版。思路也很相似,仍旧是维护一个全局最优,一个局部最优。
这里最多可以进行k次交易,就是然后本题把k变成2即可。
全局最优global是到达第i天可以最多进行j次交易的利润是多少,局部最优local是必须在第i天进行最后一次交易的利润。
先更新局部最优:
local[i][j] = max(global[i-1][j-1] + max(diff,0), local[i-1][j] + diff)
diff是今天与昨天的差价, global[i-1][j-1] + max(diff,0)是指到第i-1天最多进行j-1次交易时的利润,加上进天得最后一次交易。
后一项是local[i-1][j] + diff是指在i-1天就进行了最多j次交易,i天进行最后一次交易,原本是i-1天卖的现在变成i天卖。
然后是更新全局变量:
global[i][j] = max(global[i-1][j], local[i][j])
比较前一天的全局最优和当天的局部最优,取大的那一个。
Method 2用了降维方法节省空间。
但是注意双重loop 的内层loop, j是从k向小变到1, 因为一维空间只能保存当前一行内容,更新local时用到了了global[i-1][j-1].
若是从前往后走到了i, j时,[i-1][j-1]会被[i][j-1]覆盖掉,所以要从后往前走。
Method 1 Time Complexity: O(prices.length * k), k是最多交易次数,这里k=2. Space: O(prices.length*k).
Method 2 Time Complexity: O(prices.length * k). Space: O(k).
AC Java:
1 public class Solution { 2 public int maxProfit(int[] prices) { 3 return helper(prices,2); 4 } 5 private int helper(int[] prices, int k){ 6 if(prices == null || prices.length == 0){ 7 return 0; 8 } 9 /*10 //Method 111 int[][] local = new int[prices.length][k+1];12 int[][] global = new int[prices.length][k+1];13 for(int i = 1; i=1; j--){29 local[j] = Math.max(global[j-1] + Math.max(diff,0), local[j]+diff);30 global[j] = Math.max(global[j], local[j]);31 }32 }33 return global[k];34 }35 }